
9 Models for propagation delays

9.4 Ionospheric model for radio techniques (Draft 22 July 2008)
Dispersive effects of the ionosphere on the propagation of radio signals are classically accounted
for by linear combination of multi-frequency observations. In past years it has been shown that
this approach induces errors on the computed time of propagation that can reach 100 ps for GPS.
For wide-band VLBI observations, the induced errors might reach a couple of ps. In this section
the estimation of the effect of higher-order neglected ionospheric terms and possible conventional
models are summarized.

9.4.1 Ionospheric delay dependence on radio signals including higher order terms

The delay δρI experienced by the transionospheric electromagnetic signals, travelling from the
transmitter T at �rT to the receiver R at �rR, separated by a distance ρ, can be expressed by the
integral of the refractive index n along the ray path:

δρI =
∫ �rR

�rT

c
dl

v
− ρ =

∫ �rR

�rT

(n − 1)dl (1)

where v is the actual transionospheric signal propagation velocity at the given place, c = 299792458 m/s
is the light speed in free space and dl is the differential length element.

Effects on carrier phase data

Such refractive index for the carrier phase, np, can be expressed by the Appleton expression, for
both ordinary (upper sign) and extraordinary (lower sign) waves, as (see for instance Davies 1990,
page 72):

n2
p = 1 − X

1 − iZ − Y 2
T

2(1−X−iZ) ±
[

Y 4
T

4(1−X−iZ)2 + Y 2
L

] 1
2

(2)

where:

X =
ω2

p

ω2
(3)

YL = −ωg

ω
cos θ (4)

YT = −ωg

ω
sin θ (5)

Z =
γ

ω
(6)

being i =
√−1, θ the angle between the magnetic field �B and the electromagnetic (EM) propagation

direction �k. In general ω = 2πf is the circular frequency corresponding to frequency f . This applies
to the carrier circular frequency ω, and the plasma and gyro circular frequencies associated to the
free electrons of the ionosphere:

ω2
p =

Neq
2

meε0
(7)

ωg =
Bq

me
(8)
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where Ne is the number density of free electrons and B is the magnetic field modulus (both
depending on time and position along the EM ray), q � 1.6022 · 10−19C is the absolute value
of the electron charge, me � 9.1094 · 10−31kg is the electron mass and ε0 � 8.8542 · 10−12F/m
is the electric permittivity in free space (vacuum). Finally γ is the frictional force factor, acting
such force on each free electron, modelled as γmeż, being z the coordinate over the propagation
direction �k.

From the Appleton equation, if we neglect the frictional force (Z = 0), assuming that we are in a
cold, collisionless, magnetized plasma such as the Ionosphere, the squared phase index of refraction
can be approximated as:

n2
p = 1 − X

1 − Y 2
T

2(1−X) ±
[

Y 4
T

4(1−X)2 + Y 2
L

] 1
2

(9)

From this point, the following second-order Taylor approximation can be done for small values of
δ:

(1 + δ)η � 1 + ηδ +
η (η − 1)

2
δ2 (10)

retaining only terms up to f−4 (i.e. ω−4), similarly to Bassiri and Hajj (1993) approach, and
making the proper approximation of n2

p for transionospheric signals with frequencies ω >> ωp,
such as those of GNSS (see Datta-Barua 2006 for a detailed discussion of several approximation
ways adopted by different authors):

np = 1 − 1
2
X ± 1

2
XYL − 1

8
X2 − 1

4
X · Y 2(1 + cos2 θ) (11)

where

Y 2 = Y 2
L + Y 2

T =
(ωp

ω

)2

(12)

and again upper sign represents ordinary wave, and lower sign represents extraordinary wave which
can be typically associated to right hand polarized EM signals such as those of GPS antennas, and
most L and S Band antennas that receive satellite signals.

The following explicit expression for np can be obtained for extraordinary EM signal in terms of the
main physical constants and parameters, after substituting X , YL, Y from previous relationships
(equations 3, 4 and 5):

np = 1 − q2

8π2meε0
· Ne

f2
− q3

16π3m2
eε0

· NeB cos θ

f3
− q4

128π4m2
eε

2
0

· N2
e

f4
− q4

64π4m3
eε0

· NeB
2(1 + cos2 θ)

f4

(13)

From equation 13, and applying Eq. 1, the following ionospheric dependent terms in the carrier
phase, up to third (f−4) order, are obtained:

δρI,p = − s1

f2
− s2

f3
− s3

f4
(14)

being the first, second and third order coefficients, s1, s2 and s3, after substituting the above
introduced physical constants, me, q, ε0, with 5 significant digits, in International System of
Physical Units (SI):

s1 = 40.309
∫ �rR

�rT

Nedl (15)
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s2 = 1.1284 · 1012

∫ �rR

�rT

NeB cos θdl (16)

s3 = 812.42
∫ �rR

�rT

N2
e dl + 1.5793 · 1022

∫ �rR

�rT

NeB
2
(
1 + cos2 θ

)
dl (17)

These expressions are fully equivalent for instance to equations 2 to 5 in Fritsche et al. 2005.

It can be seen in last expressions 14 to 17 that the ionospheric delay on the carrier phase pseudor-
ange is negative, associated to an increase of the phase velocity in the EM signal transionospheric
propagation.

In order to asses the importance of the different ionospheric terms for δρI,p in equation 14, we
can start on the first term, assuming a high value of Slant Total Electron Content (STEC see
subsection 9.4.3 below for more details) of S =

∫ �rR

�rT
Nedl ∼ 300 · 1016m−2:

δρI,p,1 = −40.309S

f2
∼ −1.2 · 1020

f2
(18)

This brings, for example, to values of the order of magnitude in the first ionospheric order term
δρI,p,1 up to several km of delay for f � 150 MHz (negative for the carrier phase), corresponding
to the lower frequency of the NIMS satellite system (U.S. Navy Ionospheric Measuring System,
formerly TRANSIT), and up to several tens of meters for f = 1575.42MHz (L1 GPS carrier
frequency).

The relative importance of the first (δρI,p,1 = −s1/f2), second (δρI,p,2 = −s2/f3) and third order
terms (δρI,p,3 = −s3/f4) is also dependent on the frequencies, being the higher order terms less
important for higher frequencies (such as in the case of several VLBI frequencies compared with
GPS frequencies for instance). Indeed, from equations 14, 15, 16 and 17:

δρI,p,2

δρI,p,1
=

2.7994 · 1010

f
·
∫ �rR

�rT
NeB cos θdl∫ �rR

�rT
Nedl

(19)

By taking raw values reflecting order of magnitude of |B0 cos θ0| � 104nT at a given effective height
to evaluate both integrals, the order of magnitude of the relative value between second and first
order ionospheric terms can be approximated by:

δρI,p,2

δρI,p,1
� 2.7994 · 1010

f
|B0 cos θ0| ∼ 2.8 · 105

f
(20)

This brings to relative values for δρI,p,2 and δρI,p,1 of the less than 1% for f � 150 MHz (NIMS),
and less than 0.1% for f = 1575.42MHz (GPS L1 carrier).

Similarly, the order of magnitude of the relative value between third and second order ionospheric
terms can be estimated as:

δρI,p,3

δρI,p,2
=

7.1998 · 10−10

f
·

∫ �rR

�rT
N2

e dl∫ �rR

�rT
NeB cos θdl

+
1.3996 · 1010

f
·
∫ �rR

�rT
NeB

2
(
1 + cos2 θ

)
dl∫ �rR

�rT
NeB cos θdl

(21)

Considering the above taken raw values reflecting order of magnitude of |B0 cos θ0| � 104nT at a
given effective height to evaluate the integrals, and an intermediate angle of θ0 = 45 deg, and taking
N0 � 1012m−3 a raw order of magnitude value of effective electron density, fulfilling N0 ·

∫ �rR

�rT
Nedl =∫ �rR

�rT
N2

e dl, we get the following relative order of magnitude value between third and second order
ionospheric terms:
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δρI,p,3

δρI,p,2
� 1

f

(
1.3996 · 1010 · |3B0 cos θ0| + 7.1998 · 10−10 N0

|B0 cos θ0|
)

∼ 4.3 · 105 + 7.2 · 107

f
(22)

Then the order of magnitude of the ratio between third and second order ionospheric terms can be
as high as about 50% for NIMS frequency f � 150MHz but less than 10% for f = 1575.42MHz,
the L1 GPS carrier frequency.

Another conclusion from this approximation is that the second integral in the third order term
s3 (see 17) can be typically neglected compared with the second integral depending only on the
electron density (it can be seen in equation 22 that it is about two orders of magnitude smaller):

s3 � 812
∫ �rR

�rT

N2
e dl (23)

Finally in order to show that third order ionospheric approximation should be adequate for most
of the radio astronomic-geodetic techniques, we can consider the fourth order term in the carrier
phase δρI,p,4. It can be deduced in a similar way that first to third order terms, but now keeping
the terms in f−5 from equations 9 and 10 in the corresponding fourth order term δnp,4 of the
carrier phase ionospheric refraction index term

δnp,4 = −1
2
XYL

(
X

2
+ Y 2

[
1 +

1
8

sin2 θ tan2 θ

])
(24)

which is expressed with the same notation than previous expressions. Substituting in terms of the
dependences on the corresponding physical and mathematical constants and applying equation 1,
the 4th order ionospheric term in delay can be expressed as:

δρI,p,4 = − s4

f5
(25)

where

s4 =
q5

128π5me
3ε02

∫ �rR

�rT

N2
e B cos θdl +

q5

64π5me
4ε0

∫ �rR

�rT

NeB
3f(θ)dl (26)

being

f(θ) = cos θ

(
1 +

1
8

sin2 θ tan2 θ

)
(27)

and substituting the constant values we get:

s4 = 4.5481 · 1013

∫ �rR

�rT

N2
e B cos θdl + 8.8413 · 1032

∫ �rR

�rT

NeB
3f(θ)dl (28)

Taking into account equations 25, 28, 14 and 23, the ratio between fourth and third ionospheric
order terms can be written as:

δρI,p,4

δρI,p,3
=

1
f

(
5.5982 · 1010

∫ �rR

�rT
N2

e B cos θdl∫ �rR

�rT
N2

e dl
+ 1.0883 · 1030

∫ �rR

�rT
NeB

3f(θ)dl∫
�rR

N2
e dl

)
(29)

Taking into account the same approximations and particular values than before, the ratio can be
expressed as:

δρI,p,4

δρI,p,3
� 1

f

(
5.6 · 1010|B0 cos θ0| + 1.1 · 1030 |B0 cos θ0|3f(θ0)

N0| cos3 θ0|

)
∼ 1

f

(
5.6 · 105 + 2.3 · 103

)
(30)
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Table 1: Delays (in millimeters) are corresponding to the different higher order ionospheric terms,
from first to fourth (in columns) for a representative subset of working frequencies in radio astronomy
and geodesy: they correspond to a particular case of |B0 cos θ0| ∼ 104 nT, θ0 = π/4, N0 = 1012m−3

and S = 3 · 1018m−2. The values that can be typically neglected (those lower than 1 mm) are clearly
identified by its negative exponent.

f / MHz Technique δρI,p,1 / mm δρI,p,2 / mm δρI,p,3 / mm δρI,p,4 / mm

150 NIMS −5.3 · 106 −9.9 · 103 −4.8 · 103 −1.8 · 101

400 NIMS / Doris −7.5 · 105 −5.2 · 102 −9.4 · 101 −1.3 · 10−1

1228 GPS (L2) −8.0 · 104 −1.8 · 101 −1.1 · 100 −5.0 · 10−4

1575 GPS (L1) −4.8 · 104 −8.5 · 100 −3.9 · 10−1 −1.4 · 10−4

2000 Doris −3.0 · 104 −4.2 · 100 −1.5 · 10−1 −4.2 · 10−5

2300 Low VLBI f. −2.3 · 104 −2.8 · 100 −8.8 · 10−2 −2.2 · 10−5

8400 High VLBI f. −1.7 · 103 −5.7 · 10−2 −4.9 · 10−4 −3.3 · 10−8

12000 Time trans. low Ku f. −8.3 · 102 −1.9 · 10−2 −1.1 · 10−4 −5.2 · 10−9

14000 Time trans. high Ku f. −6.1 · 102 −1.2 · 10−2 −6.2 · 10−5 −2.5 · 10−9

From this expression it can be seen than, in particular, the relative weight of fourth to third order
ionospheric terms is less than 1% for f � 150MHz (NIMS) and less than 0.1% for the L1 GPS
carrier at f = 1575.42MHz. Another conclusion from this development is that the fourth order
term can be approximated by the first term in equation 29:

s4 � 4.55 · 1013

∫ �rR

�rT

N2
e B cos θdl (31)

Finally in Table 9.4.1 you can see as the different terms are translated in delays, for different
frequencies of interest in radio astronomic-geodetic research, with the same approximations and
particular values than above (|B0 cos θ0| ∼ 104nT , N0 ∼ 1012m−3 and S ∼ 3 · 1018m−2). It can be
seen, taking as significant threshold the delay value of 1mm, that:

• First order ionospheric term, as expected, is significant for all the considered frequencies.
• Second order ionospheric term should be also taken into account in all the frequencies, ex-

cepting for the high VLBI and time transfer Ku band ones.
• Third order ionospheric term should be taken into account in NIMS and Doris low frequencies,

being in the significance limit for GPS and high Doris frequencies. It can be neglected for
VLBI and Time transfer Ku band frequencies.

• Fourth order can be neglected, excepting for the very low NIMS frequency of 150 MHz.

Effects on code pseudorange data

The corresponding effect can be computed for the code pseudorange measurements, by using the
well known relationship between phase and code refractive indices, np and nc respectively, relating
the phase velocity with the group (code) velocity (see for instance Davies, 1990, pag. 13):

nc = np + f
dnp

df
(32)

A similar relationship is fulfilled between the code and carrier phase ionospheric delays, δρI,c and
δρI,p, after introducing equation 32 in equation 1:

δρI,c = δρI,p + f
d

df
δρI,p (33)

Applying equation 33 to equation 14, the ionospheric effect on code ionospheric delay, up to third
order term, is:

δρI,c =
s1

f2
+ 2

s2

f3
+ 3

s3

f4
(34)

5



It can be seen from this relationship, taking into account equations 15, 16 and 17, that the
ionospheric delay on the code pseudorange is positive, associated to a decrease of the EM sig-
nal group velocity in the transionospheric propagation.

9.4.2 Correcting the ionospheric effects on code and phase

The more efficient way of correcting the ionospheric effects is by combining simultaneous mea-
surements in k different frequencies, which allows to cancel out the ionospheric effects up to order
k − 1, taking into account relationships 14 and 34 for carrier phase or code. A well know example
is the case of actual GPS system with two frequencies, which allows to cancel out the first order
ionospheric effect by the so called ionospheric-free combination of observables (see below). And
in the future, with Galileo and modernized GPS systems, the full correction can be extended to
second order ionospheric terms too.

9.4.3 Correcting the ionospheric term for single frequency users

If the user is only able to gather measurements at a single frequency f , then his main problem is
to correct as much as possible (or at least mitigate) the first order ionospheric terms in phase and
code measurements, δρI,p,1 and δρI,c,1, which explains more than 99.9% of the total ionospheric
delays, as we have shown above. The first ionospheric order terms are only dependent on the Slant
Total Electron Content S =

∫ �rR

�rT
Nedl and the signal frequency (equations 14, 34, 15):

δρI,p,1 = −40.309
S

f2
δρI,c,1 = +40.309

S

f2
(35)

There are different available external sources for the STEC S. Many of them provides the vertically
integrated ionospheric free electron density, so called Vertical Total Electron Content (VTEC, V ),
globally or at least at regional scale.

From the VTEC values (V ) corresponding to the observation time, the STEC S can be estimated
thanks to a factor approximating the pass from the vertical to the slant Total Electron Content:
the so called ionospheric mapping function, M . Indeed:

S = M · V (36)

Typically a thin shell spherical layer model, at a fixed effective ionospheric height h, is applied:

M =
1√

1 − r2 cos2 E
(r+h)2

(37)

being r and E the geocentric distance and ray spherical elevation taken from the user receiver.
In the case of IGS the adopted effective height is h = 450km. This approximation can introduce
significant errors as well, of 5% or more, specially when the 3D nature of the electron density
distribution Ne can affect more to the integrated (total electron content) values: at low elevation
or low latitude observations (see for instance Hernández-Pajares et al. 2005).

Some of the more common sources of electron content are:

• Global Vertical Total Electron Content (VTEC) maps, such as those computed by the Inter-
national GNSS Service (IGS, http://www.igs.org) from a global network of dual-frequency
receivers. The user can compute its STEC, S, from interpolating the VTEC maps and ap-
plying the corresponding mapping function (equations 36 and 37 with h = 450km in IGS).
The IGS VTEC maps have typically errors of 10 to 20% (see for instance Hernández-Pajares
2004 and Orus et al. 2002).

• Predicted VTEC models such as those used by GNSS: Klobuchar model broadcasted in GPS
navigation message, or NeQuick (http://www.itu.int/ITU-R/study-groups/software/rsg3-p531-
electron-density.zip) for future Galileo system. They can show average errors up to 50% (up
to 30% at low latitude, see for instance Orus et al. 2002, Aragon et al. 2004).
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• Regional VTEC models, which provide better accuracy by means of a better temporal and
spatial resolution, thanks to the availability of dense networks of permanent receivers (such
as the cases of Japan, Europe or USA).

• Empirical standard models of the Ionosphere, based on all available data sources, such as the
International Reference Ionosphere (IRI, Bilitza 1990, http://modelweb.gsfc.nasa.gov/ionos/iri.html)
or PIM (Daniell et al. 1995, http://www.cpi.com/products/pim/pim.html). If they are ad-
justed to the actual conditions by means of one or several parameters (such as the Sun Spot
Number, SSN, Bilitza et al. 1998), these empirical models can provide at least similar perfor-
mance than predicted VTEC models for GNSS. Otherwise the performance can be logically
poor, depending on the region and time.

9.4.4 Correcting the ionospheric term for dual frequency users

In case the user is able to gather two simultaneous measurements in two frequencies, fa and fb

(fa > fb), the situation is much better, because the first order term can be cancelled, and this
means more than 99.9% of the total ionospheric delay. Indeed, by applying as weight factors f2

a

and −f2
b , the corresponding first-order-ionospheric-free combination ρ

(1)
p ,

ρ(1)
p (a, b) =

f2
aρ

(a)
p − f2

b ρ
(b)
p

f2
a − f2

b

(38)

leads to the following new ionospheric dependences, for carrier phase and code (δρ(1)
I,p and δρ

(1)
I,c

respectively), after considering equations 14, 34:

δρ
(1)
I,p =

f2
aδρ

(a)
I,p − f2

b δρ
(b)
I,p

f2
a − f2

b

=
s2

fafb(fa + fb)
+

s3

f2
af2

b

(39)

δρ
(1)
I,c =

f2
aδρ

(a)
I,c − f2

b δρ
(b)
I,c

f2
a − f2

b

= − 2s2

fafb(fa + bb)
− 3s3

f2
af2

b

(40)

where s2 and s3 will depend on electron density Ne and magnetic field �B, following expressions 16
and 23. The following approximations can be done to facilitate the computations:

s2 = 1.1284 · 1012

∫ �rR

�rT

NeB cos θdl � 1.1284 · 1012Bp cos θp · S (41)

where Bp and θp are the magnetic field modulus and projecting angle regarding to the propagation
direction, at a convenient effective pierce point p, and S is the integrated electron density, or STEC
S (this approximation is used by, among in other works cited above, Kedar et al., 2003 and by
Petrie et al., 2008). The third order coefficient can be approximated in terms of the maximum
electron density along the ray path Nm:

s3 � 812
∫ �rR

�rT

N2
e dl � 812ηNmS (42)

It can be taken η � 0.66 and Nm can be expressed as function of the slab thickness H (which
can be modelled as function on the latitude and local time) and the VTEC V (see more details in
Fritsche et al. 2005 and mentioned references).

These expressions typically leads in GPS to values of up to few centimeters for second order
ionospheric correction: for instance δρ

(1)
I,p � 2 cm for a given observation with high STEC values

(such as S � 300 TECU = 1018 m−3) and magnetic field projection of B cos θ � 3 · 104nT .

Moreover the curvature (or bending) of the ray can be considered as an additional correction Δs3

(up to few millimeters at low elevation for GPS frequencies), appearing as a f−4 dependence too,
which can be easily added to s3 coefficient of equation 42. In particular Jakowski et al. 1994
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derived a simplified expression for GPS which, with the above introduced notation, the coefficient
of the f−4 term approximating the bending effect is:

Δs3 � 2.495 · 108[(1 − 0.8592 cos2 E]−1/2 − 1] · S2 (43)

not being the units in SI system in this case: the STEC S in TECU=1016m−3, the factor Δs3 in
mm·(MHz)4.

Then, to evaluate δρ
(1)
I,p and δρ

(1)
I,c we need as well an STEC source for S, as in the case of single

frequency users (see previous subsection). In this case, the double frequency measurements can be
used, to provide a direct estimate of S, from the first order term which contains more than 99.9%
of it. For instance in GPS S can be estimated from the ionospheric (geometry-free) combination
of carrier phases LI = L1 − L2 and codes PI = P2 − P1, being Li and Pi the carrier phase and
code measurements for carrier frequency fi, in length units. Indeed, writing LI and PI in terms of
corresponding carrier phase ambiguity BI and interfrequency delay code biases (DCBs) for receiver
and transmitter D and D′

LI = S + BI (44)

PI = S + D + D′ (45)

the STEC S can be estimated as

S = LI− < LI − PI > −D − D′ (46)

being < · > the average along a carrier phase continuous arch of transmitter-receiver data (with
no phase cycle-slips). This way of computing the STEC has certain advantages, specially when no
external sources of STEC are available (such as in real-time conditions) or at low latitudes and
elevations (see Hernández-Pajares et al. 2007 for corresponding discussion).

Moreover, taking into account equations 39 and 40, a source of magnetic field is needed, which
should be more realistic than the dipolar one, such as the International Magnetic Reference
Field (IMRF, http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html) or the Comprehensive Model
(see http://core2.gsfc.nasa.gov/CM/), to reduce errors up to more than 60% in certain regions
(see as well discussion in Hernández-Pajares et al. 2007). Equations 39 to 42, with an adequate
source of STEC and magnetic field (see above) provide a conventional method to correct the
ionospheric higher order terms for dual frequency users.

An alternative approach to correcting the GPS measurements is to apply the second order ionospheric
correction by means of redefining the first-order ionospheric free combination of observables (Brun-
ner and Gu 1991), for instance in terms of the line-of-sight magnetic field projection term1. This
approach has the disadvantage of producing a time dependent carrier phase bias. More details on
pros and cons of different approaches for higher order ionospheric corrections (including regional
models such as Hoque and Jakowski 2006) can be found in Hernández-Pajares et al. 2008.

9.4.5 Correcting the ionospheric term for multi(three or more)-frequency users

GNSS systems offering simultaneous observations in 3 or more frequencies should be available
soon. Thence it will be possible to cancel out, from these k simultaneous observations of the same
transmitter-receiver pair, up to the first k − 1 ionospheric order terms.

As an example, and from equation 38 applied to two pairs of three consecutive frequencies (fa, fb

and fc), is possible to define a combination of of carrier phase observables first and second order
ionospheric free, ρ

(2)
p :

ρ(2)
p =

fafb(fa + fb)ρ
(1)
p (a, b) − fbfc(fb + fc)ρ

(1)
p (b, c)

fafb(fa + fb) − fbfc(fb + fc)
(47)

1From equation 44 and definition of first-order ionospheric free combination of carrier phases Lc ≡ (f2
1 L1 −

f2
2L2)/(f2

1 −f2
2 ) = ρ� +Bc (being ρ� the non-frequency dependent terms –including geometric distance, clock errors and

tropospheric delay– and Bc the carrier phase bias), an apparently first and second order iono free combination of carrier
phases can be easily derived L′

c = ρ� + B′
c, being L′

c = Lc − s2LI/(f1f2(f1 + f2)) and B′
c = Bc − s2BI/(f1f2(f1 + f2))

the new combination of observables and time-varying carrier phase bias, respectively.
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From here and from equation 39 the following remaining higher order ionospheric dependence can
be deduced:

δρ
(2)
I,p =

s3

fafc(f2
b + fb[fa + fc])

(48)

A similar definition to equation 47 can be done for the code observations, bringing (by using
equation 40) to the following remaining higher order ionospheric dependence:

δρ
(2)
I,c =

−2s3

fafc(f2
b + fb[fa + fc])

(49)
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